Kamis, 13 Januari 2011

OPTIKA GEOMETRI

BAB I
OPTIKA GEOMETRIK

1.1. Pengertian optik
Optik adalah cabang fisika yang menggambarkan kelakuan dan sifat cahaya dan interaksi cahaya dengan materi. Optik menerangkan dan diwarnai oleh gejala optik.
Bidang optik biasanya menggambarkan sifat cahaya tampak, inframerah dan ultraviolet; tetapi karena cahaya adalah gelombang elektromagnetik, gejala yang sama juga terjadi di sinar-X, gelombang mikro, gelombang radio, dan bentuk lain dari radiasi elektromagnetik.
Di ruang bebas suatu gelombang berjalan pada kecepatan c = 3x108 m/s. Ketika memasuki medium tertentu (dielectric atau nonconducting) gelombang berjalan dengan suatu kecepatan v, yang mana adalah karakteristik dari bahan dan kurang dari besarnya kecepatan cahaya itu sendiri (c). Perbandingan kecepatan cahaya didalam ruang hampa dengan kecepatan cahaya di medium adalah indeks bias n bahan sebagai berikut : n = c/v
1.2. OPTIKA GEOMETRIK
Optika geometris atau optika sinar menjabarkan perambatan cahaya sebagai vektor yang disebut sinar. Sinar adalah sebuah abstraksi atau "instrumen" yang digunakan untuk menentukan arah perambatan cahaya. Sinar sebuah cahaya akan tegak lurus dengan muka gelombang cahaya tersebut, dan ko-linear terhadap vektor gelombang.
Menurut prinsip Fermat, jarak yang ditempuh sebuah sinar antara dua buah titik, adalah jarak tempuh terpendek dan tercepat. Sebelumnya, pada tahun 60, Heron dari Alexandria, seorang matematikawan berkebangsaan Yunani yang tinggal di salah satu propinsi Roma, Ptolemaic Egypt, menjelaskan prinsip refleksi sinar cahaya dengan jarak tempuh terkecil dalam medium dengan beberapa cermin datar. Ibn al-Haytham, dalam bukunya Kitab al-Manazir atau Book of Optics pada tahun 1021 memperluas prinsip Heron untuk refleksi dan refraksi dan menetapkan versi pertama principle of least time dengan definisi sinar sebagai aliran partikel energi yang merambat dengan kecepatan konstan pada jarak tempuh yang lurus dengan radiasi ke segala arah. Hanya satu sinar yang terlihat yaitu sinar dengan radiasi tegak lurus terhadap arah pandang mata. Penyederhanaan principle of least time ditulis oleh Pierre de Fermat pada suratnya ke Cureau de la Chambre tertanggal 1 Januari 1662, segera mendapat sanggahan oleh Claude Clerselier, seorang ahli optika dan juru bicara ternama golongan Cartesian pada bulan Mei 1662.
Pada masa kini, definisi prinsip Fermat menambahkan jarak tempuh sinar yang stasioner.
Optika geometris menjelaskan sifat cahaya dengan pendekatan paraksial atau hampiran sudut kecil dengan penjabaran matematis yang linear, sehingga komponen optik dan sistem kerja cahaya seperti ukuran, posisi, pembesaran subyek yang dijelaskan menjadi lebih sederhana, diantaranya dengan teknik optik Gaussian dan penelusuran sinar paraksial. Cahaya didefinisikan sebagai partikel yang merambat, yang disebut sinar. Ali Sina Balkhi (980–1037), juga mengatakan bahwa the perception of light is due to the emission of some sort of particles by a luminous source. Pierre Gassendi pada tahun 1660 membuat proposal teori partikel cahaya. Isaac Newton mempelajari teori Gassendi dan teori plenum Descartes. Pada tahun 1675, Newton dalam buku Hypothesis of Light membuat Corpuscular theory of Light yang direvisi hingga tahun 1704 dalam bukunya Opticks, yang menerangkan fenomena refleksi dan refraksi cahaya dengan asumsi cepat rambat yang lebih tinggi ketika cahaya melalui medium yang padat tumpat karena daya tarik gravitasi yang lebih kuat. Teori ini mengilhami Pierre Simon marquis de Laplace dengan hipotesa lobang hitam, sebuah benda yang sangat padat hingga cahaya pun tidak dapat lepas dari padanya. Laplace menarik hipotesanya saat teori gelombang optik fisis bermunculan. Essay Laplace kemudian dikembangkan oleh Stephen Hawking dan George F.R. Ellis dalam buku The large scale structure of space-time.

Diagram refleksi sinar cahaya spekular
Refleksi atau pantulan cahaya terbagi menjadi 2 tipe: specular reflection dan diffuse reflection. Specular reflection menjelaskan perilaku pantulan sinar cahaya pada permukaan yang mengkilap dan rata, seperti cermin yang memantulkan sinar cahaya ke arah yang dengan mudah dapat diduga. Kita dapat melihat citra wajah dan badan kita di dalam cermin karena pantulan sinar cahaya yang baik dan teratur. Menurut hukum refleksi untuk cermin datar, jarak subyek terhadap permukaan cermin berbanding lurus dengan jarak citra di dalam cermin namun parity inverted, persepsi arah kiri dan kanan saling terbalik. Arah sinar terpantul ditentukan oleh sudut yang dibuat oleh sinar cahaya insiden terhadap normal permukaan, garis tegak lurus terhadap permukaan pada titik temu sinar insiden. Sinar insiden dan pantulan berada pada satu bidang dengan masing-masing sudut yang sama besar terhadap normal.
Citra yang dibuat dengan pantulan dari 2 (atau jumlah kelipatannya) cermin tidak parity inverted. Corner retroreflector memantulkan sinar cahaya ke arah datangnya sinar insiden.[9]
Diffuse reflection menjelaskan pemantulan sinar cahaya pada permukaan yang tidak mengkilap (Inggris:matte) seperti pada kertas atau batu. Pantulan sinar dari permukaan semacam ini mempunyai distribusi sinar terpantul yang bergantung pada struktur mikroskopik permukaan. Johann Heinrich Lambert dalam Photometria pada tahun 1760 dengan hukum kosinus Lambert (atau cosine emission law atau Lambert's emission law) menjabarkan intensitas radian luminasi sinar terpantul yang proposional dengan nilai kosinus sudut θ antara pengamat dan normal permukaan Lambertian dengan persamaan:
 photons/(s•cm2•sr)
Refraksi


Illustrasi hukum Snellius untuk n1 < n2, seperti pada antarmuka udara/air. θ1 dan θ2 adalah sudut kritis bias dimana sinar merah merambat menurut prinsip Fermat dan membentuk jendela Snellius. Pada sudut yang lebih besar terjadi total internal reflection sedangkan pada sudut yang lebih kecil, cahaya akan merambat lurus.
Ketika gelombang elektromagnetik menyentuh permukaan medium dielektrik dari suatu sudut, leading edge gelombang tersebut akan melambat sementara trailing edgenya tetap melaju normal. Penurunan kecepatan leading edge disebabkan karena interaksi dengan elektron dalam medium tersebut. Saat leading edge menumbuk elektron, energi gelombang tersebut akan diserap dan kemudian diradiasi kembali. Penyerapan dan re-radiasi ini menimbulkan keterlambatan sepanjang arah perambatan gelombang. Kedua hal tersebut menyebabkan perubahan arah rambat gelombang yang disebut refraksi atau pembiasan. Perubahan arah rambat gelombang cahaya dapat dihitung dari indeks bias berdasarkan hukum Snellius:

dimana:
•    θ1 dan θ2 adalah sudut antara normal dengan masing-masing sinar bias dan sinar insiden
•    n1 dan n2 adalah indeks bias masing-masing medium
•    v1 dan v2 adalah kecepatan gelombang cahaya dalam masing-masing medium


Letak bayangan benda akibat proses refraksi pada lensa
Perhitungan letak bayangan pada lensa dan cermin akan mengikuti:

di mana
S1 adalah jarak objek/benda dari lensa/cermin
S2 adalah jarak bayangan benda dari lensa/cermin
f adalah jarak fokus = R/2.
Rumus perhitungan untuk perbesaran bayangan, M:

di mana tanda negatif menyatakan objek yang terbalik (objek yang berdiri tegak memakai tanda positif).
Hukum Snellius juga disebut Hukum pembiasan atau Hukum sinus dikemukakan oleh Willebrord Snellius pada tahun 1621 sebagai rasio yang terjadi akibat prinsip Fermat. Pada tahun 1637, René Descartes secara terpisah menggunakan heuristic momentum conservation in terms of sines dalam tulisannya Discourse on Method untuk menjelaskan hukum ini. Cahaya dikatakan mempunyai kecepatan yang lebih tinggi pada medium yang lebih padat karena cahaya adalah gelombang yang timbul akibat terusiknya plenum, substansi kontinu yang membentuk alam semesta.

















BAB II
BAYANGAN
2.1. Pengertian Bayangan
Bayang-bayang terjadi apabila cahaya terhalang sesuatu, maka terbentuklah bayang-bayang.
Cahaya merambat dalam garis lurus. Bila cahaya terhalang sesuatu maka akan timbulah bayangan. Jika sumber cahayanya lemah, seperti matahari pada hari berawan, bayangan tidak kentara. Ditempat teduh tidak ada bayang-bayang, karena tempat teduh sudah merupakan bayangan sebuah benda yang menghalangi sinar matahari.
Besar-kecil bayangan
Apabila suatu benda bergerak mendekati cahaya, bayang-bayang benda tersebut membesar karena benda tersebut menghalangi cahaya menjadi lebih besar, maka bayang-bayang yang timbul pun akan menjadi makin besar. Dan apabila benda menjauhi cahaya, bayang-bayang benda itupun menjadi kecil karena benda tersebut hanya menjadi penghalang yang semakin kecil.
2.2. Bayangan Cermin



Dalam sebuah cermin bidang, berkas sinar yang sejajar mengalami perubahan arah secara keseluruhan, tapi masih tetap sejajar; bayangan terbentuk di sebuah cermin bidang merupakan bayangan maya, yang besarnya sama dengan objek aslinya. Ada pula cermin lengkung, dimana seberkas cahaya sejajar menjadi seberkas cahaya yang konvergen, yang sinarnya berpotongan dalam fokus (titik imagi) cermin. Yang terakhir adalah cermin cembung, dimana sebuah sinar yang sejajar menjadi tersebar (divergen), dengan sinar tersebar dari sebuah titik perpotongan "di belakang" cermin. Kekurangan dari lensa cekung yang berbentuk bola serta cermin cembung adalah tak bisa mengfokuskan sinar sejajar ke sebuah titik tunggal dalam kaitan dengan lanturan (aberasi) sferis. Reflektor parabola mengatasi masalah ini dengan membuat sinar sejajar yang datang (misalnya, cahaya dari sebuah bintang yang jauh) untuk difokuskan ke sebuah titik yang kecil; mendekati suatu titik yang ideal. Reflektor parabola tak cocok untuk mencitrakan benda terdekat karena sinar cahaya yang tidak sejajar.

Seberkas cahaya yang terpantul di cermin pada sebuah sudut pantul yang sama dengan sudut datang (jika ukuran sebuah cermin jauh lebih besar dari panjang gelombang cahaya). Jika berkas cahaya mendatangi permukaan cermin pada sudut 30° dari vertikal, lalu terpantul dari sudut datang dengan sudut 30° dari vertikal dalam arah yang berlawanan.

Hukum ini secara matematis menuruti interferensi sebuah gelombang bidang di sebuah batas datar.

Untuk benda nyata maupun benda maya berlaku persamaan


Cermin Datar   

s = - s'

y = y'

M = | y'/y | = +1

s = jarak benda
s' = jarak bayangan
y = tinggi benda
y' = tinggi bayangan

 Untuk mendapatkan bayangan yang terbentuk pada cermin cekung/cembung diperlukan sinar-sinar istimewa, yaitu:

Sinar datang sejajar sumbu utama, dipantulkan melalui/seolah-olah dari titik fokus.
Sinar datang melalui/menuju titik fokus dipantulkan sejajar sumbu utama.
Sinar datang melalui/menuju titik pusat kelengkungan dipantulkan melalui titik pusat juga.


Rumus yang berlaku untuk cermin cekung den cermin cembung adalah

f = R / 2

1/f = 1/s + 1/s'

M = |y' / y | = |s' / s |

Dengan :

R = jari-jari kelengkungan
f = fokus (jarak titik api)
M= pembesaran bayangan

Bayangan yang terbentuk selalu maya, tegak dan diperkecil.


DUA BUAH CERMIN ATAU DUA BUAH LENSA BERHADAPAN

Prinsip dua cermin sama dengan dua lensa yaitu bayangan yang dihasilkan dari cermin 1 merupakan benda untuk cermin 2, sehingga:

d = s1' + s2

Mtot = | (s1'/s1) x (s2'/s2) |

d = jarak kedua cermin/lensa
s1' = jarak bayangan 1 ke cermin/lensa 1
s2 = jarak benda 2 ke cermin/lensa




2.3. Bayangan Lensa / Kanta

Kanta atau sering disebut lensa adalah sebuah alat untuk mengumpulkan atau menyebarkan cahaya, biasanya dibentuk dari sepotong gelas yang dibentuk.

Kanta sederhana
 

Kanta sederhana atau sering disebut kanta saja adalah sebuah kanta tunggal speris.

Kanta sederhana dibedakan berdasarkan kelengkungan kedua bidang antarmukanya. Sebuah kanta cembung mempunyai dua bidang antarmuka yang cembung, kanta dengan dua bidang cekung disebut kanta .Jika salah satu bidang antarmuka datar (mempunyai radius yang tak berhingga), maka kanta tersebut disebut kanta plano cembung atau kanta plano cekung. Kanta cembung cekung mempunyai satu bidang antarmuka cekung dan satu bidang antarmuka cembung, juga sering disebut kanta meniscus.
Kanta sederhana sangat rentan terhadap aberasi kromatik dan aberasi optis lainnya.



Kanta cembung


Pada kanta cembung, sinar yang merambat melalui kedua antarmuka akan dibiaskan (terfokus) menuju ke satu titik pada sumbu optis kanta, yang disebut jarak fokus (en:focal length). Kanta cembung dalam bahasa Inggris juga disebut positive lens atau converging lens. Kanta cembung membentuk focal point pada sisi berlawanan dengan persamaan lens maker





di mana:

S2 adalah jarak citra dan sesuai konvensi, bernilai negatif pada sisi yang sama dengan subyek
f adalah 'rentang focal, bernilai negatif untuk lensa concave



Kanta cekung

Pada kanta cekung, sinar yang merambat akan dibiaskan menjauhi sumbu optis kanta dengan proyeksi imajiner sinar menuju ke satu titik,













BAB III
PEMBIASAN


Pembiasan cahaya

Pembiasan cahaya adalah pembelokan cahaya ketika berkas cahaya melewati bidang batas dua medium yang berbeda indeks biasnya. Indeks bias mutlak suatu bahan adalah perbandingan kecepatan cahaya di ruang hampa dengan kecepatan cahaya di bahan tersebut. Indeks bias relatif merupakan perbandingan indeks bias dua medium berbeda. Indeks bias relatif medium kedua terhadap medium pertama adalah perbandingan indeks bias antara medium kedua dengan indeks bias medium pertama. Pembiasan cahaya menyebabkan kedalaman semu dan pemantulan sempurna.

1. Persamaan indeks bias mutlak



2. Hukum Pembiasan Cahaya



Lensa adalah peralatan sangat penting dalam kehidupan manusia. Mikroskop menggunakan susunan lensa untuk melihat jasad-jasad renik yang tak terlihat oleh mata telanjang. Kamera menggunakan susunan lensa agar dapat merekam obyek dalam film. Teleskop juga memanfaatkan lensa untuk melihat bintang-bintang yang jaraknya jutaan tahun cahaya dari bumi.

Kuat lensa berkaitan dengan sifat konvergen (mengumpulkan berkas sinar) dan divergen (menyebarkan sinar) suatu lensa. Untuk Lensa positif, semakin kecil jarak fokus, semakin kuat kemampuan lensa itu untuk mengumpulkan berkas sinar. Untuk Lensa negatif, semakin kecil jarak fokus semakin kuat kemampuan lensa itu untuk menyebarkan berkas sinar. Oleh karenanya kuat lensa didefinisikan sebagai kebalikan dari jarak fokus.



Rumus Kuat Lensa


Pembentukan Bayangan Pada Lensa


Cahaya dipesongkan apabila bergerak secara serong melalui medium yang berbeza seperti melalui udara melalui kaca melalui air. Keadaan ini disebut sebagai pembiasan cahaya. Cahaya bergerak lebih laju melalui udara daripada melalui air. Cahaya juga bergerak lebih laju melalui udara daripada melalui kaca. Oleh itu cahaya yang bergerak secara serong dipesongkan apabila melalui dua medium yang berbeza. Cahaya yang bergerak lurus melalui medium yang berbeza tidak dibiaskan.

Pembiasan cahaya menyebabkan penyedut minuman kelihatan bengkok dan lebih besar di dalam air, dan juga dasar kolam kelihatan lebih cetek dari kedalaman sebenarnya.


































Alat Optik

Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.

Mata

Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal. Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.



Bagian-bagian mata

Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.

Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.



daya akomodasi mata

Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.

Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.

Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).

Rabun Jauh dan Cara Memperbaikinya

Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).

Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.



miopi dikoreksi menggunakan lensa negatif

Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.

Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.

Rabun Dekat dan Cara Memperbaikinya

Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).

Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.

hipermetropi dikoreksi menggunakan lensa positif

Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.

Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.

Kaca Pembesar

Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.

Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.

Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).

Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah


Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.

Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).

Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah

Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.



Mikroskop

Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.

Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.



mikroskop dan bagian-bagiannya


pembentukan bayangan pada mikroskop

Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fob dan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.

Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah

Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.

Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.


untuk mata berakomodasi maksimum


untuk mata tidak berakomodasi



Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.

Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,

P = Pob × Pok

Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:

(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).

d = s’ob + sok

(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan

s’ok = −sn

(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan

sok = fok

Teropong Bintang

Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.

Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob > fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah

d = fob + fok

dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.

Adapun perbesaran P yang dihasilkan oleh teropong adalah



















BAB  IV
Kesimpulan

Optik adalah cabang fisika yang menggambarkan kelakuan dan sifat cahaya dan interaksi cahaya dengan materi. Optik menerangkan dan diwarnai oleh gejala optik.
Bidang optik biasanya menggambarkan sifat cahaya tampak, inframerah dan ultraviolet; tetapi karena cahaya adalah gelombang elektromagnetik, gejala yang sama juga terjadi di sinar-X, gelombang mikro, gelombang radio, dan bentuk lain dari radiasi elektromagnetik.
Optika geometris atau optika sinar menjabarkan perambatan cahaya sebagai vektor yang disebut sinar. Sinar adalah sebuah abstraksi atau "instrumen" yang digunakan untuk menentukan arah perambatan cahaya. Sinar sebuah cahaya akan tegak lurus dengan muka gelombang cahaya tersebut, dan ko-linear terhadap vektor gelombang.
Bayang-bayang terjadi apabila cahaya terhalang sesuatu, maka terbentuklah bayang-bayang.

Tidak ada komentar:

Posting Komentar